首页> 外文OA文献 >Spent Fuel Measurements: Passive Neutron Albedo Reactivity (PNAR) and Photon Signatures
【2h】

Spent Fuel Measurements: Passive Neutron Albedo Reactivity (PNAR) and Photon Signatures

机译:乏燃料测量:被动中子反照率反应(PNAR)和光子签名

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The International Atomic Energy Agency?s (IAEA) safeguards technical objective is the timely detection of a diversion of a significant quantity of nuclear material from peaceful activities to the manufacture of nuclear weapons or of other nuclear explosive devices or for purposes unknown, and deterrence of such diversion by the risk of early detection. An important IAEA task towards meeting this objective is the ability to accurately and reliably measure spent nuclear fuel (SNF) to verify reactor operating parameters and verify that the fuel has not been removed from reactors or SNF storage facilities. This dissertation analyzes a method to improve the state-of-the-art of nuclear material safeguards measurements using two combined measurement techniques: passive neutron albedo reactivity (PNAR) and passive spectral photon measurements. PNAR was used for measurements of SNF in Japan as well as fresh fuel pins at Los Alamos National Laboratory (LANL). The measured PNAR signal was shown to trend well with neutron multiplication and fissile content of the SNF. The PNAR measurements showed a 73% change in signal for a fuel burnup range of 7.1 to 19.2 GWd/MTHM of spent mixed-oxide (MOX) fuel and a 40% change in signal over a range of initial ^235U enrichment from 0.2% to 3.2% in UO2 fuel. Photon measurements were performed on a wide range of SNF pins to determine which photon signatures are visible in different sets of fuels. These signatures were then investigated and tested using a sensitivity analysis to determine the spent fuel parameters to which each signal is most sensitive. These photon signatures can be used to determine SNF parameters that can support PNAR determination of SNF fissile content. Based on the results from these measurements, we have concluded that spectral photon measurements can determine operating parameters to improve the implementation of PNAR. We also concluded that PNAR can accurately measure multiplication and fissile content in SNF with standard deviations of 1% and 4%, respectively. The PNAR and photon measurements can be used together as a powerful tool to support the IAEA safeguards technical objective.
机译:国际原子能机构(IAEA)的保障技术目标是及时发现大量核材料从和平活动中转移到制造核武器或其他核爆炸装置或出于未知目的的用途,并制止这种转移有早期发现的风险。原子能机构实现这一目标的一项重要任务是准确,可靠地测量乏核燃料(SNF)的能力,以核实反应堆的运行参数并核实该燃料尚未从反应堆或SNF储存设施中移出。本文分析了一种使用两种组合的测量技术来改进核材料保障措施最新技术的方法:被动中子反照率反应(PNAR)和被动光谱光子测量。 PNAR用于日本的SNF测量,以及洛斯阿拉莫斯国家实验室(LANL)的新鲜燃料针。结果表明,随着中子倍增和SNF的易裂变含量,测得的PNAR信号趋势良好。 PNAR测量结果表明,在燃尽混合氧化物(MOX)燃料的7.1至19.2 GWd / MTHM的燃耗范围内,信号变化73%,并且在初始235U浓缩范围从0.2%降低至235U时,信号变化40%。在UO2燃料中占3.2%。在广泛的SNF引脚上进行了光子测量,以确定在不同的燃料组中可见的光子签名。然后使用敏感性分析对这些特征进行调查和测试,以确定每个信号对其最敏感的乏燃料参数。这些光子签名可用于确定可支持PNAR确定SNF裂变含量的SNF参数。根据这些测量的结果,我们得出结论,光谱光子测量可以确定操作参数以改善PNAR的实现。我们还得出结论,PNAR可以准确地测量SNF中的倍增和易裂变含量,标准偏差分别为1%和4%。 PNAR和光子测量可以一起用作支持IAEA保障技术目标的有力工具。

著录项

  • 作者

    Eigenbrodt, Julia M;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号